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ABSTRACT

Explainable machine learning seeks to provide various stakehold-
ers with insights intomodel behavior via feature importance scores,
counterfactual explanations, and influential samples, among other
techniques. Recent advances in this line of work, however, have
gone without surveys of how organizations are using these tech-
niques in practice. This study explores how organizations view
and use explainability for stakeholder consumption. We find that
the majority of deployments are not for end users affected by the
model but for machine learning engineers, who use explainability
to debug the model itself. There is a gap between explainability in
practice and the goal of public transparency, since explanations pri-
marily serve internal stakeholders rather than external ones. Our
study synthesizes the limitations with current explainability tech-
niques that hamper their use for end users. To facilitate end user
interaction, we develop a framework for establishing clear goals
for explainability, including a focus on normative desiderata.
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1 INTRODUCTION

Machine learning (ML) systems are being increasingly embedded
into many aspects of daily life, such as healthcare [18], finance [27],
and social media [6]. In an effort to design ML systems worthy of
human trust, research has proposed a variety of techniques for ex-
plaining ML models to stakeholders. Deemed “explainability,” this
body of previous work attempts to illuminate the reasoning used
byMLmodels. “Explainability” loosely refers to any technique that
helps the user of a ML model understand why the model behaves
the way it does. Explanations can come inmany forms: from telling
patients which symptoms were indicative of a particular diagnosis
[36] to helping factory workers analyze inefficiencies in a produc-
tion pipeline [19].

Explainability has been toutedas away to enhance transparency
of ML systems, particularly for end users. Often releasing (or forc-
ing organizations to release) the data that models were trained on
or the accompanying code is challenging due to user privacy is-
sues and incentives to preserve trade secrecy. Moreover, end users
are generally not equipped to be able to understand how raw data
and code translate into benefits or harms that might affect them
individually. By providing an explanation for how the model made
a decision, explainability techniques seek to provide transparency
directly targeted to human users, often with the goal of improv-
ing user trust. The importance of explainability as a concept has
been reflected in legal and ethical guidelines for data and ML. In

cases of automated decision-making, Articles 13-15 of the Euro-
pean General Data Protection Regulation (GDPR) require that data
subjects have access to “meaningful information about the logic in-
volved, as well as the significance and the envisaged consequences
of such processing for the data subject” [44]. In addition, technol-
ogy companies have released artificial intelligence (AI) principles
that include transparency as a core value, including notions of ex-
plainability, interpretability, or intelligibility [1, 2].

This growing interest in “peering under the hood” ofMLmodels
and being able to provide explanations to human users has made
explainability an important subfield of ML. Despite this growing
literature, there has been little work characterizing how explana-
tions have been deployed by organizations in the real world.

In this paper, we attempt to understand how organizations have
deployed local explainability techniques so that we can observe
which techniques work best in deployment, report on shortcom-
ings of particular techniques, and better guide future research. We
focus specifically on local explainability techniques. These tech-
niques explain individual predictions, which makes them more rel-
evant for providing transparency for end users.

Our interview study synthesizes interviews of roughly fifty peo-
ple from approximately thirty organizations to understand which
explainability techniques are used and how.We report trends from
two sets of interviews and provide suggestions for future research
directions that combine explainability with privacy, fairness, and
causality. To the best of our knowledge, we are the first to conduct
a study of how explainability techniques are used by organizations
that use ML models in their workflows.

1.1 Terms

For the sake of clarity,we define various terms based on the context
in which they appear in the forthcoming prose.

• Predictor refers to a trained ML model.
• Explainability refers to attempts to provide insights into the
predictor’s behavior.

• Stakeholders are the peoplewho either want the model to be
“explainable", will consume the explanation, or are affected
by the model itself.

• Practice refers to the real-world context in which the predic-
tor has been deployed.

• Local Explainability aims to explain the predictor’s behavior
at a specific input.

• Global Explainability attempts to understand the high-level
concepts and reasoning used by a predictor.

1.2 Format

The rest of this paper is organized as follows:
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(1) We discuss the methodology of our survey, describing the
interviews and introducing notation in Section 2.

(2) We summarize our overall findings in Section 3.
(3) We detail how local explainability techniques are used at

various organizations and discuss technique-specific take-
aways in Section 4.

(4) We develop a framework for establishing clear goals when
deploying local explainability in Section 5.1.

(5) We discuss ethical desiderata for explainability in Section 5.2.
(6) We conclude in Section 6.

2 METHODOLOGY

2.1 Interview Structure

In the spirit of Holstein et al. [29], we study how industry practi-
tioners look at and deploy explainable ML. Specifically, we study
how particular organizations deploy explainability algorithms, in-
cluding who consumes the explanation and how it is evaluated for
the intended stakeholder. We conduct two set of interviews: Group
1 looked at how data scientists who are not currently using ex-
plainable machine learning hope to leverage various explainability
tools, while Group 2, the crux of this paper, looked at how explain-
able machine learning has been deployed in practice.

For Group 1, Fiddler Labs led a set of around twenty interviews
to assess explainability needs across various organizations in tech-
nology and financial services. We specifically focused on teams
that do not currently employ explainability technology. These semi-
structured, hour-long interviews included the following questions:

• What are your ML use cases?
• What is your current model development workflow?
• What explainability tools do you use?
• What are your pain points in deploying ML models?
• Do you think explainability will help address those points?

Group 2 spanned roughly thirty people across approximately
twenty different organizations, both for-profit and non-profit.Most
of these organizations aremembers of the Partnership onAI, which
is a global multistakeholder non-profit established to study and
formulate best practices on AI technologies for the benefit of so-
ciety. With each individual, we held a thirty-minute to two-hour
semi-structured interview to understand the state of explainability
in their organization, their motivation for using explanations, and
the benefits and shortcomings of the methods used. Some organi-
zations asked to stay anonymous, not to be referred to explicitly
in the prose, or not to be included in the acknowledgements.

Of the people we spoke with in Group 2, around one-third rep-
resented non-profit organizations (academics, civil society organi-
zations, and think tanks), while the rest worked for for-profit or-
ganizations (corporations, industrial research labs, and start-ups).
Broken down by organization, around half were for-profit and half
were academic / non-profit. Around one-third of the interviewees
were executives at their organization, around half were research
scientists or engineers, and the remainder comprised professors
at academic institutions, who commented on the consulting they
have done with industry leaders to commercialize their research.
The questions we asked Group 2 included, but were not limited to,
the following:

• Does your organization use ML model explanations?
• What type of explanations have you used (e.g., feature-based,
sample-based, counterfactual, or natural language)?

• Who is the audience for themodel explanation (e.g., research
scientists, product managers, domain experts, or users)?

• In what context have you deployed the explanations (e.g., in-
forming the development process, informing human decision-
makers about the model, or informing the end user on how
actions were taken based on the model’s output)?

• How does your organization decide when and where to use
model explanations?

2.2 Technical Details

Let F be a family of black box predictors. Let X and Y denote the
input space and output space, respectively. A black box predictor
f ∈ F maps an input x ∈ X ⊆ Rd to an output f (x) ∈ Y, f :
R
d 7→ Y. When we assume f has a parametric form, we denote

that parametric black box predictor as f θ where θ ∈ Θ. We denote

D to be a training dataset, where (x (i ) ∈ X,y(i ) ∈ Y) is an input-
output pair, |D| = N , and Dx denotes all N inputs x .

Each organization we spoke with has deployed an ML model f .
They hope to explain a data point x using an explanation function
д. Local explainability refers to an explanation for why f predicted
f (x) for a fixed point x . The local explanation methods we discuss
come in one of the following forms: Which feature xi of x was
most important for prediction with f ? Which training datapoint
z ∈ Dx was most important to f (x)? What is the minimal change
to the input x required to change the output f (x)?

In this paper, we deliberately decide to focus on the more popu-
larly deployed local explainability techniques instead of global ex-
plainability techniques. Global explainability refers to techniques
that attempt to explain the model as a whole. These techniques
attempt to characterize the concepts learned by the model [32],
simpler models learned from the representation of complex mod-
els [19], prototypical samples from a particular model output [14],
or the topology of the data itself [21]. None of our interviewees
reported deploying global explainability techniques, though some
studied these techniques in research settings.

3 SUMMARY OF FINDINGS

3.1 Explainability Needs

This subsection provides an overview of explainability needs that
were uncovered with Group 1 - data scientists from organizations
that do not currently deploy explainability techniques. These scien-
tists were asked to describe their top “pain points” in building and
deploying ML models, and how they hope to use explainability.

• Model performancedebugging: Most data scientists strug-
gle with debugging poor model performance. They wish to
identify causes for why the model performs poorly on cer-
tain inputs, and also to identify regions of the input space
with below average performance. In addition, they seek guid-
ance on how to engineer new features, drop redundant fea-
tures, and gather more data to improve model performance.
For instance, one data scientist said: “If I have 60 features,
maybe it’s equally effective if I just have 5 features.” Dealing
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with feature interactions was also a concern, as the data sci-
entist continued, “Feature A will impact feature B, [since]
feature A might negatively affect feature B - how do I at-
tribute [importance in the presence of] correlations?” Oth-
ers mentioned explainability as a debugging solution, help-
ing to “narrow down where things are broken.”

• Modelmonitoring: Several data scientists worry about drift
in the feature and prediction distributions after deployment.
Ideally, they would like to be alerted when there is a signif-
icant drift relative to the training distribution [7, 46]. One
organization would like explanations for how drift in fea-
ture distributions would impact model outcomes and fea-
ture contribution to the model: “We can compute howmuch
each feature is drifting, but we want to cross-reference with
which features are impacting the model a lot.”

• Model transparency: Organizations that deploy models to
make decisions that directly affect end users seek explana-
tions for model predictions. The explanations are meant to
increase model transparency and comply with current or
forthcoming regulation. In general, data scientists believe
that explanations can also help communicate predictions
to a broader external audience of other business teams and
customers. One company stressed the need to “show your
work” to provide reasons on underwriting decisions to cus-
tomers, and another company needed explanations to re-
spond to customer complaints.

• Model audit: In financial organizations, due to regulatory
requirements, all deployed ML models must go through an
internal audit. Data scientists building these models need to
have them reviewed by internal risk and legal teams. One
of the goals of the model audit is to conduct various kinds
of tests provided by regulations like SR 11-7 [43]. An effec-
tive model validation framework should include: (1) evalua-
tion of conceptual soundness of themodel, (2) ongoing mon-
itoring, including benchmarking, and (3) outcomes analy-
sis, including back-testing. Explainability is viewed as a tool
for evaluating the soundness of the model on various data
points. Financial institutions would like to conduct sensitiv-
ity analyses, checking the impact of small changes to inputs
on model outputs. Unexpectedly large changes in outputs
can indicate an unstable model.

3.2 Explainability Usage

In Table 1, we aggregate some of the explainability use cases that
we received from different organizations in Group 2. For each use
case, we define the domain of use (i.e., the industry in which the
model is deployed), the purpose of the model, the explainability
technique used, the stakeholder consuming the explanation, and
how the explanation is evaluated. Evaluation criteria denote how
the organization compares the success of various explanation func-
tions for the chosen technique (e.g., after selecting feature impor-
tance as the technique, an organization can compare LIME [48] and
SHAP [35] explanations via the faithfulness criterion [66]).

In our study, feature importance was the most common explain-
ability technique, and Shapley values were the most common type

of feature importance explanation. The most common stakehold-
ers were ML Engineers (or Research Scientists), followed by do-
main experts (Loan Officers and Content Moderators). Section 4
provides definitions for each technique and further details on how
these techniques were used at Group 2 organizations.

3.3 Stakeholders

Most organizations in Group 2 deploy explainability atop their ex-
isting ML workflow for one of the following stakeholders:

(1) Executives: These individuals deem explainability neces-
sary to align with the company’s internal AI principles. One
research scientist felt that “explainability was strongly ad-
vised and marketed by higher-ups,” though sometimes ex-
plainability simply became a checkbox.

(2) ML Engineers: These individuals (including data scientists
and researchers) train ML models at their organization and
use explainability techniques to understand how the trained
model works: do the most important features, most similar
samples, and nearest training point(s) in the opposite class
make sense? Using explainability to debug what the model
has learned, this group of individuals were the most com-
mon explanation consumers in our study.

(3) End Users: This is the most intuitive consumer of an expla-
nation. The person consuming the output of anMLmodel or
making a decision based on the model output is the end user.
Explainability shows the end user why the model behaved
the way it did, which is important for showing the model is
trustworthy and also providing greater transparency.

(4) Other Stakeholders: There are many other possible stake-
holders for explainability. One such group is regulators, who
may mandate that certain algorithmic decision-making sys-
tems provide explanations either for affected populations or
for their own regulatory activities. It is important that this
group understands how explanations are deployed based
on existing research, what techniques are feasible, and how
the techniques can align with the desired explanation from
a model. Another group is domain experts, who are often
tasked with auditing the model’s behavior and ensuring it
aligns with expert intuition. For many organizations, min-
imizing the divergence between the expert’s intuition and
the explanation used by the model is key to successfully im-
plementing explainability.

Overwhelmingly, we found that local explainability techniques
are mostly consumed by ML engineers and data scientists to au-
dit models before deployment rather than to provide explanations
to end users. Our interviews reveal factors that prevent organiza-
tions from showing explanations to end users or those affected by
decisions made from ML model outputs.

3.4 Beyond Deep Learning

Though deep learning has gained popularity in recent years, many
organizations in Group 2 still use classical ML techniques (e.g.,
logistic regression, support vector machines, and GP regression),
likely due to a need for simpler, interpretable models [49].
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Domain Model Purpose Explainability Techniqe Stakeholders Evaluation Criteria

Finance Loan Repayment Feature Importance Loan Officers Completeness [35]

Content Moderation Malicious Reviews Feature Importance Content Moderators Completeness [35]

Finance Cash Distribution Feature Importance ML Engineers Sensitivity [66]

Facial Recognition Smile Detection Feature Importance ML Engineers Faithfulness [8]

Content Moderation Sentiment Analysis Feature Importance QA ML Engineers ℓ2 norm

Healthcare Medicare access Counterfactual Explanations ML Engineers normalized ℓ1 norm

Content Moderation Object Detection Adversarial Perturbation QA ML Engineers ℓ2 norm

Table 1: Summary of deployed local explainability use cases

A subset of the explainability community has focused on inter-
preting black-box deep learning models, even though practition-
ers overwhelmingly feel that there is a dearth of model-specific
techniques to understand traditional ML models. For example, one
research scientist noted that, “Many [financial institutions] use
kernel-based methods on tabular data.” As a result, there is a de-
sire to translate explainability techniques for kernel support vector
machines for genomics [54] to models trained on tabular data.

Model agnostic techniques like Lundberg and Lee [35] can be
used for traditional models, but are “likely overkill” for explain-
ing kernel-based ML models, according to one research scientist,
since model-agnostic methods can be computationally expensive
and lead to poorly approximated explanations.

3.5 Key Takeaways

This subsection summarizes some key takeaways from Group 2
that shed light on the reasons for the limited deployment of ex-
plainability techniques and their use primarily as sanity checks
for ML engineers. Organizations generally still consider the judg-
ments of domain experts to be the implicit ground truth for expla-
nations. Since explanations produced by current techniques often
deviate from the understanding of domain experts, some organi-
zations still use human experts to evaluate the explanation before
it is presented to users. Part of this deviation stems from the po-
tential for ML explanations to reflect spurious correlations, which
result from models detecting patterns in the data that lack causal
underpinnings. As a result, organizations find explainability tech-
niques useful for helping their ML engineers identify inconsisten-
cies between the model’s explanations and their intuition or that
of domain experts, rather than for directly providing explanations
to end users.

In addition, there are technical limitations that make it difficult
for organizations to show end users explanations in real-time. The
non-convexity of certain models make certain explanations (e.g.,
providing themost influential datapoints) hard to compute quickly.
Moreover, providing certain explanations can raise privacy con-
cerns by running the risk of model inversion.

More broadly, organizations lack frameworks for deciding why
they want an explanation, and current research fails to capture the
objective of an explanation. For example, large gradients, repre-
senting the direction of maximal variation with respect to the out-
put manifold, do not necessarily “explain” anything to end users.
At best, gradient-based explanations provide an interpretation of
how the model behaves upon an infinitesimal perturbation (not

necessarily a feasible one [30]), but does not “explain” if the model
captures the underlying causal mechanism in the data.

4 DEPLOYING LOCAL EXPLAINABILITY

In this section, we dive into how local explainability techniques
are used at various organizations (Group 2) . We start by defining
each local explainability technique, then discuss organizations’ use
cases, and finally report takeaways for the technique in question.

4.1 Feature Importance

Feature importance was by far the most popular technique we
found across our study. It is used across domains (finance, health-
care, facial recognition, content moderation). Also known as feature-
level interpretations, feature attributions, or saliency maps, this
method is by far the most widely used and most well-studied ex-
plainability technique [12, 26].

4.1.1 Formulation. Feature importance defines an explanation func-
tional д : f × Rd 7→ Rd that takes in a predictor f and a point of
interest x and returns importance scores д(f ,x) = ϕx ∈ Rd for all
features, where д(f ,x)i = ϕx ,i (simplified to ϕi in context) is the
importance of (or attribution for) feature xi of x .

These explanation functionals roughly fall into two categories:
perturbation-based techniques [9, 16, 23, 35, 48, 58] and gradient-
based techniques [8, 41, 53, 55, 56, 59]. Note that gradient-based
techniques can be seen as a special case of a perturbation-based
technique with an infinitesimal perturbation size. Heatmaps are
also a type of feature-level explanation that denote how important
a region or collection of features, is [5, 23]. A prominent class of
perturbation based methods are based on Shapley values from co-
operative game theory [50]. Shapley values are a fair way to distrib-
ute the gains from a cooperative game to its players. In applying
the method to explaining a model prediction, a cooperative game
is defined between the features with the model prediction as the
gain. The highlight of Shapley values is that they enjoy axiomatic
uniqueness guarantees. Additional details about Shapley value ex-
planations can be found in Lundberg and Lee [35], Sundararajan
et al. [59], and Aas et al. [3].

4.1.2 Shapley Values in Practice. Organization A works with fi-
nancial institutions and helps explain models for credit risk anal-
ysis. To integrate into the existing ML workflow of these institu-
tions, Organization A proceeds as follows. They let data scientists
train a model to the desired accuracy. Note that Organization A
focuses mostly on models trained on tabular data, though they are
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beginning to venture into unstructured data (i.e., language and im-
ages). During model validation, risk analysts conduct stress tests
before deploying the model to loan officers and other decision-
makers. After decision-makers vet the model outputs as a sanity
check and decide whether or not to override the model output, Or-
ganization A generates Shapley value explanations.

Before launching the model, risk analysts are asked to review
the Shapley value explanations to ensure that the model exhibits
expected behavior (i.e., the model uses the same features that a
human would for the same task). Notably, the customer support
team at these institutions can also use these explanations to tell
individuals who inquire as to what went into the decision-making
process for their loan approval or cash distribution decision. They
are shown the percentage contribution to the model output (the
positive ℓ1 norm of the Shapley value explanation along with the
sign of contribution). This means that the explanation would be
along the lines of, “55% of the decision was decided by your age,
which positively correlated with the predicted outcome.”

When comparing Shapley value explanations to other popular
feature importance techniques, Organization A found that in prac-
tice LIME explanations [48] give unexpected explanations that do
not align with human intuition. Recent work [68] shows that the
fragility of LIME explanations can be traced to the sampling vari-
ance when explaining a singular data point and to the explanation
sensitivity to sample size and sampling proximity.

Though decision-makers have access to the feature-importance
explanations, end users are still not shown these explanations as
reasoning for model output. Organization A aspires to eventually
expose this “explanation” to end users.

For gradient-based language models, Organization A uses Inte-
grated Gradients, a path integral variant of Shapley Values [35, 59],
to flag malicious reviews and moderate content at the aforemen-
tioned institutions. This information can be highlighted to ensure
the trustworthiness and transparency of the model to the decision-
maker (the hired content moderator), since they can now seewhich
word was most important to flag the content as malicious.

Going forward, Organization A intends to use a global variant
of the Shapley value explanations by exposing how Shapley value
explanations work on average for datapoints of a particular pre-
dicted class (e.g., on average someone who was denied a loan had
their age matter most for the prediction). This global explanation
would help risk analysts get a birds-eye view of how a model be-
haves and whether it aligns with their expectations.

4.1.3 Heatmaps in Transportation. Organization B looks to detect
facial expressions from video feeds of users driving. They hope to
use explainability to identify the actions a user is performingwhile
the user drives. Organization B has tried feature visualization and
activation visualization techniques that get attributions by back-
propagating gradients to regions of interest [5, 67]. Specifically,
they use these probabilistic Winner-Take-All techniques (variants
of existing gradient-based feature importance techniques [53, 59])
to localize the region of importance in the input space for a partic-
ular classification task. For example, when detecting a smile, they
expect the mouth of the driver to be important.

Though none of these desired techniques have been deployed
for the end user (the driver in this case), ML engineers at Organi-
zation B found these techniques useful for qualitative review. On
tiny datasets, engineers can figure out which scenarios have false
positives (videos falsely detected to contain smiles) and why. They
can also identify if true positives are paying attention to the right
place or if there is a problem with spurious artifacts.

However, while trying to understand why the model erred by
analyzing similarities in false positives, they have struggled to scale
this local technique across heatmaps in aggregate across multi-
ple videos. They are able to qualitatively evaluate a sequence of
heatmaps for one video, but doing so across 100M frames simulta-
neously is far more difficult. Paraphrasing the VP of AI at Organi-
zation B, aggregating saliency maps across videos is moot and con-
tains little information. Note that an individual heatmap is an ex-
ample of a local explainability technique, but an aggregate heatmap
for 100M frames would be a global technique. Unlike aggregating
Shapley values for tabular data as done at Organization A, taking
an expectation over heatmaps (in the statistical sense) does not
work, since aggregating pixel attributions is meaningless. One op-
tion Organization B discussed would be to clustering low dimen-
sional representations of the heatmaps and then tagging each clus-
ter based on what themodel is focusing on; unfortunately, humans
would still have tomanually label the clusters of important regions.

4.1.4 Spurious Correlations. Related to model monitoring for fea-
ture drift detection discussed in Section 3.1, Organization B has
encountered issues with spurious correlations in their smile detec-
tion models. Their Vice President of AI noted that “[ML engineers]
must know to what extent you want ML to leverage highly corre-
lated data to make classifications.” Explainability can help identify
models that focus on that correlation and can find ways to have
models ignore it. For example, there may be a side effect of a corre-
lated facial expression or co-occurrence: cheek raising, for exam-
ple, co-occurs with smiling. In a cheek-raise detector trained on
the same dataset as a smile detector but with different labels, the
model still focused on the mouth instead of the cheeks. Both mod-
els were fixated on a prevalent co-occurrence. Attending to the
mouth was undesirable in the cheek-raise detector but allowed in
the smile detector.

One way Organization B combats this is by using simpler mod-
els on top of complex feature engineering. For example, they use
black box deep learning models for building good descriptors that
are robust across camera viewpoints and will detect different fea-
tures that subject matter experts deem important for drowsiness.
There is one model per important descriptor (i.e., one model for
eyes closed, one for yawns, etc.). Then, they fit a simple model on
the extracted descriptors such that the important descriptors are
obvious for the final prediction of drowsiness. Ideally, if Organi-
zation B had guarantees about the disentanglement of data gener-
ating factors [4], they would be able to understand which factors
(descriptors) play a role in downstream classification.

4.1.5 Feature Importance - Takeaways.

(1) Not only do Shapley values come with nice axiomatic guar-
antees, they are also simple to deploy for decision-makers
to sanity check the models they have built.
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(2) Feature importance is not used directly for end users, and in-
stead explanations require looping in decision-makers who
are acting based the original model outputs.

(3) Heatmaps are hard to aggregate over, which makes it hard
to do false positive detection at scale.

(4) Spurious correlations can be detected with simple gradient-
based techniques.

4.2 Counterfactual Explanations

Counterfactual explanations are techniques that explain individual
predictions by providing a means for recourse. While some exist-
ing open source implementations for counterfactual explanations
exist [63, 65], they either work for specific model-types or are not
black-box in nature. In this section, we discuss the formulation for
counterfactual explanations and describe one solution for each de-
ployed technique.

4.2.1 Formulation. Counterfactual explanations are points close
to the input for which the decision of the classifier changes. For
example, for a person who was rejected for a loan by a ML model,
a counterfactual explanation would possibly suggest: "Had your
income been greater by $5000, the loan would have been granted."

Given an input x and a classifier f , a counterfactual explanation
c can be found by solving the optimization problem:

min
c

d(x,c)

s.t.f (x) , f (c)
(1)

While the term counterfactual has awell understoodmeaning in
the causality literature [28, 45], counterfactual explanations forML
were introduced by Wachter et al. [64]. Sharma et al. [51] provide
details on existing techniques.

4.2.2 Counterfactual Explanations in Healthcare. Organization C
uses a faster version of the formulation in Sharma et al. [51] to find
counterfactual explanations for projects in healthcare. When peo-
ple apply for Medicare, Organization C hopes to flag if a user’s ap-
plication has errors and to provide explanations on how to correct
the errors. Moreover, ML engineers can use the robustness score to
compare different models trained using this data: this robustness
score is effectively the distance between the counterfactual and
original point in Euclidean space. The original formulation makes
use of a slower genetic algorithm, so they optimized the counter-
factual explanation generation process. They are currently devel-
oping a first-of-its-kind application that can directly take in any
black-box model and data and return a robustness score, fairness
measure, and counterfactual explanation, all from a single under-
lying algorithm.

The use of this approach has several advantages: it can be ap-
plied to black-box models, works for any input data type, and gen-
erates multiple explanations in a single run of the algorithm. How-
ever, there are some shortcomings that Organization C is trying to
address. One challenge of counterfactual models is that the coun-
terfactual might not be feasible. Organization C plans to address
this by using the training data to guide the counterfactual gener-
ation process, ensuring that the counterfactuals are feasible given
the training distribution. In addition, the flexibility of the counter-
factual approach comes with a drawback that is common among

explanations for black-box models: there is no guarantee of the
optimality of the explanation since black-box techniques cannot
guarantee optimality.

Through the creation of a deployed solution for this method, the
organization realized that clients would ideally want an explain-
ability score, along with the measure of fairness and robustness.
They are currently developing an explainability score that seeks
to measure how explainable different models are. However, since
explanations are subjective, it is crucial to see how such a measure
and the produced explanations are received by clients.

4.2.3 Counterfactual Explanations - Takeaways.

(1) Counterfactual explanation solutions yield client interest,
since the underlying method is flexible and such explana-
tions are easy for end users to understand.

(2) Since the method is heuristic, it is hard to say that the ex-
planation produced is optimal. In general, counterfactual ex-
planations are difficult to evaluate.

4.3 Adversarial Training

In order to ensure the predictor being deployed is robust to adver-
saries and behaves as intended, many organizations use adversar-
ial training to ensure the predictor fits to the desired, robust, and
human-interpretable features. Interestingly, this is a use case for
explainability techniques that is not for enhancing transparency
so much as protecting the integrity of the algorithmic decision-
making process.

4.3.1 Formulation. Recent works have also explored the intersec-
tion between adversarial robustness and model interpretations [20,
22, 24, 55, 66]. In particular, adversarially trained models have been
shown not only to be robust but also to provide sharper and clearer
feature importance scores. The claim of one of these works is that
the closest adversarial example should perturb the robust features
(indicative of a particular class) and not fit to spurious non-robust
features [31]. The robustness of a model to adversarial attacks de-
pends on how well the feature importance (saliency) map aligns
with the input. The setup of feature importance in Singla et al. [55]
is as follows:

д(f ,x) = max
x̃

L (fθ ∗ (x̃),y)

‖x̃ − x ‖0 ≤ k

‖x̃ − x ‖2 ≤ ρ

We let |x̃−x | be the top-k feature importance scores of the input,
x . This is similar to the adversarial example setup which is usually
written in the same manner as the above (without the ℓ0 norm to
limit the number of features that changed). It is also interesting
to note that the formulation to find counterfactual explanations
above matches the formulation for finding adversarial examples.
Sharma et al. [51] use this connection to generate adversarial ex-
amples and define a black-box model robustness score.

4.3.2 Image ContentModeration. Organization Dmoderates user-
generated content (UGC) on several public platforms. Specifically,
the R&D team at Organization D developed several models to de-
tect adult and violent content from users’ uploaded images. Their
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quality assurance (QA) team measures model robustness to im-
prove content detection accuracy under the threat of adversarial
examples.

The robustness of a content moderation model is measured by
the minimum perturbations required for an image to evade detec-
tion. Given a gradient-based image classification model f : Rd →

{1, . . . ,K }, and we assume f (x) = argmaxi (Z (x)i ) where Z (x) ∈
R
K is the final (logit) layer output, andZ (x)i is the prediction score

for the i-th class. The objective can be formulated as the following
optimization problem to find the minimum perturbation:

argmin
x

{d (x,x0) + cL(f (x),y)} (2)

d(·, ·) is some distance measure that Organization D chooses to be
the ℓ2 distance in Euclidean space; L(·) is the cross-entropy loss
function and c is a balancing factor.

As is common in the adversarial literature, Organization D ap-
plies Projected Gradient Descent (PGD) to search for the minimum
perturbation from the set of allowable perturbations S ⊆ Rd [37].
The search process can be formulated as

xt+1 = Πx+S

(

xt + α sgn (∇xL (fθ ∗ (x),y))
)

until xt is misclassified by the detection model. ML engineers on
the QA team are shown a ℓ2-norm perturbation distance averaged
over n test images randomly sampled from the test dataset. The
larger the average perturbation, the more robust the model is, as it
takes greater effort for an attacker to evade detection. The average
perturbation required is also widely used as a metric when com-
paring different candidate models and different versions of a given
model.

Organization D finds that more robust models have more con-
vincing gradient-based explanations, i.e., the gradient of the output
with respect to the input shows that the model is focusing on rele-
vant portions of the images, confirming recent research [22, 31, 62].

4.3.3 Text Content Moderation. Organization E uses text content
moderation algorithms on its UGC platforms, such as forums. Its
QA team is responsible for the reliability and robustness of a sen-
timent analysis model, which labels posts as positive or negative,
trained on UGC. The QA team seeks to find the minimum pertur-
bation required to change the classification of a post. In particular,
they want to know how to take misclassified posts (e.g., negative
ones classified as positive) and change them to the correct class.

Given a sentiment analysis model f : X → Y, which maps
from feature space X to a set of classY, an adversary aims to gen-
erate an adversarial post xadv from the original post x ∈ X whose
ground truth label is f (x) = y ∈ Y so that f

(

xadv
)

, y. The QA
team tries to minimize d(x,xadv ) for a domain-specific distance
function. Organization E uses the ℓ2 distance in the embedding
space, but it is equally valid to use the editing distance [42]. Note
that perturbation technique changes accordingly.

In practice, to find theminimumdistance in the embedding space,
Organization E chooses to iteratively modify the words in the orig-
inal post, starting from the words with the highest importance.
Here importance is defined as the gradient of the model output
with respect to a particular word. ML engineers compute the Jaco-
bian matrix of the given posts x = (x1,x2, · · · ,xN ) where xi is the

i-th word. The Jacobian matrix is as follows:

Jf (x) =
∂ f (x)

∂x
=

[

∂ f j (x)

∂xi

]

i ∈1...N , j∈1...K

(3)

where K represents the number of classes (in this case K = 2), and
f j (·) represents the confidence value of the jth class. The impor-
tance of word xi is defined as

Cxi = Jf ,i,y =
∂ f y (x)

∂xi
(4)

i.e., the partial derivative of the confidence value based on the pre-
dicted class y regarding to the input word xi . This procedure ranks
the words by their impact on the sentiment analysis results. The
QA team then applies a set of transformations/perturbations to the
most important words to find the minimum number of important
words that must be perturbed in order to flip an sentiment analysis
API result.

4.3.4 Adversarial Training - Takeaways.

(1) There is a relation between model robustness and explain-
ability. Model robustness improves the quality of feature im-
portances (specifically saliency maps), confirming recent re-
search findings [22].

(2) Feature importance helps find minimal adversarial pertur-
bations for language models in practice.

4.4 Influential Samples

This technique asks the question: Which data point in the training
datasetx ∈ Dx is most influential to the predictor’s output f (x test)
for a test point x test? Statisticians have used measures like Cook’s
distance [17] which measure the effect of deleting a data point on
the model output. However, such measures require an exhaustive
search and hence do not scale well for larger datasets.

4.4.1 Formulation. For over half of the organizations, influence
functions has been the tool of choice for explaining which training
points are influential to the predictor’s output for a point x [34]
(though only one organization actually deployed the technique).
We letL(f θ ,x) be the predictor’s loss for point x , so the empirical

risk minimizer is given by f̂ θ = argminθ ∈Θ
1
N

∑N
i=1 L(f θ ,x

(i )).

Note that yx = f̂ θ (x) is the predicted output at x with the trained
risk minimizer. [34] defines the most influential data point z to a
fixed point x as that which maximizes the following:

Iup, loss (z,x) = −∇θL
(

f̂ θ (x),yx

)⊤
H−1
f̂
θ

∇θL
(

f̂ θ (z),yx

)

This quantity measures the effect of upweighting on datapoint (z)
on the loss atx . The goal of sample importance is to uncover which
training examples, when perturbed, would have the largest effect
(positive or negative) on the loss of a test point.

4.4.2 Influence Functions in Insurance. Organization F uses influ-
ence functions to explain risk models in the insurance industry.
They hope to identify which customers might see an increase in
their premiums based on their driving history in the past. The or-
ganization hopes to divulge to the end user how the premiums
for drivers similar to them are priced. In other words, they hope
to identify the influential training data points [34] to understand
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which past drivers had the greatest influence on the prediction for
the observed driver. Unfortunately, Organization F has struggled
to expose this information to end users since the Hessian compu-
tation has made doing so impractical since the latency is high.

More pressingly, even when Organization F lets the influence
function procedure run, they find that many influential data points
are simply outliers that are important for all drivers since those
anomalous drivers are far out of distribution. As a result, instead
of identifying which drivers are most similar to a given driver, the
influential sample explanation identifies drivers that are very dif-
ferent from any driver (i.e., outliers). While this is could in theory
be useful for outlier detection, it prevents the explanations from
being used at deployment.

4.4.3 Influential Samples - Takeaways.

(1) Influence functions can be intractable for large datasets; as
such, a significant effort is needed to improve thesemethods
to make them easy to deploy in practice.

(2) Influence functions can be sensitive to outliers in the data,
such that they might be more useful for outlier detection
than for providing end users explanations.

5 RECOMMENDATIONS

This section provides recommendations for future work, based on
the technique-specific takeaways in Section 4 and the key take-
aways in Section 3.5. In order to address the challenges organiza-
tions face when striving to provide explanations to end users, we
recommend a framework for establishing clear desiderata in ex-
plainability, including how to approach normative concerns.

5.1 Establish Clear Desiderata

Most organizations we spoke to solely deploy explainability tech-
niques for internal engineers and scientists, as a debugging mech-
anism or as a sanity check. At the same time, these organizations
also affirmed the importance of understanding the stakeholder, and
hope to be able to explain a model prediction to the end user. Once
the target population of the explanation is understood, organiza-
tions can devise and deploy explainability techniques accordingly.
We propose the following 3 steps for establishing clear desider-
ata and improving decision making around explainability. These
include: clearly identifying the target population, understanding
their needs, and clarifying the intention of the explanation.

(1) Identify your target population (aka your stakeholder).

That is, who is your desired explanation consumer? Ideally
this person is also affected by or is shown output based on
the model.

(2) Engage with the stakeholder. Ask them some variant of
“What would you need the model to explain to you in order
to understand, trust, or contest the model prediction?” and
“How would an explanation help you?”
• If the explanation would not be helpful: Better understand
the use case of the model and how it is being deployed.

• If the explanation would be helpful: Follow up with un-
derstanding how the explanation will better inform the
target population.

(3) Understand the intention of the explanation. Once the
context of the explanation and the helpfulness of the expla-
nation are established, examine what will be done with the
explanation.
• Static Consumption: Will the explanation be used as a san-
ity check for a data scientist or shown to an end user as
reasoning for a particular prediction?

• Dynamic Model Updates: Will the explanation be used to
garner feedback from the end user as to how the model
ought to be updated to better align with their intuition?
That is, how does the user interact with the model after
viewing the explanation?

Once the desiderata are clarified, domain experts can be shown
the explanations to ensure that they exhibit expected behavior. Hav-
ing clearer desiderata is vital since the current literature lacks a
clear direction for why explanations are desired and how explana-
tions would be helpful in practice.

5.2 Important Normative Desiderata

In this subsection, we discuss a few normative desiderata that com-
panies should consider when deploying explainability techniques.
These desiderata (with the exception of causality) were not explic-
itly mentioned in our interviews, and have been consciously in-
cluded here in order highlight important AI ethics concerns.

5.2.1 FairnessGuided By Explainability. As organizations consider
deploying explainability techniques, it is important to reflect on
fairness as a key desideratum. Explanations can help expose fair-
ness violations by providing insights into possible biases in amodel.
For example, work on counterfactual explanations [51] and [63]
has demonstrated how explanations can be used to examine predic-
tor fairness. We now define how bias can potentially be detected
using two explainability approaches.

Approach 1: Given a binary predictor f , an input x , and a fea-
ture importance explanation function д : f × Rd 7→ R

d that re-
turns importance scores д(f ,x) = ϕx ∈ Rd for all features, where
д(f ,x)i = ϕx ,i (simplified to ϕi in context) is the importance of
(or attribution for) feature xi of x . Let A be a protected attribute.
Then, if ϕx ,A > ϵ the predictor indicates potential discrimination
at a local level, where ϵ is a fairness-sensitive parameter decided
by the ML engineer.

Approach 1 implies that if a protected attribute, such as race or
gender, has an importance beyond a certain level for determining
the prediction for an individual, this is indicative of potential bias,
and the ML engineer should take steps to examine such decision-
making. This approach can be extended to a global level by taking
an expectation of the importance of the protected attribute over the
different groups to find the importance of the protected attribute
for every group. Note that the applicability of this approach for
fairness is based on the assumption that features are independent,
and other methods should be considered if this is not the case.

In addition, it is important to note that this is not meant to be
a definition of "bias" itself but a potential indicator for bias. Given
that much of the bias literature in ML relies on the use of protected
attributes to mitigate or correct for bias [13], the fact that a pro-
tected class variable is considered important for a prediction does
not necessarily imply the model exhibits algorithmic bias. Instead,
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the goal of this approach is to provide a sanity check. If a protected
class variable plays a key role in the algorithm’s decision, the ML
engineer should ensure that the use of this variable is appropriate.

Approach 2: Consider a set of points Z that represent the most
influential samples responsible for the prediction of input x . Let A
be a protected attribute. If a higher percentage of points in Z have
the same value forA as the input x , this is potentially indicative of
prejudice towards or against the group having that value of A.

Approach 2 implies that a model is might be biased when in-
dividuals having the same protected attribute value are most re-
sponsible towards a new individual that belongs to the same pro-
tected attribute group. This might be indicative of bias arising due
to a group being treated similarly (positive or negative) historically
(which is reflected in the data and hence the model), or a lack of
sample diversity for particular groups. Thismight also be reflective
of an reliance of the protected attribute towards a model’s decision,
which, as discussed above, can be undesirable if not done to specif-
ically correct for bias. Again, this is not meant to be a definition of
bias, but rather a sanity check for ML engineers to check for bias.

The two approaches above intuitively follow from the respec-
tive explanation regimes (i.e., feature importance and influence
functions), and we suggest how both approaches generate expla-
nations that might be useful for detecting biases.

5.2.2 Explainability and Privacy. Another important desideratum
for organizations to consider when deploying explainability tech-
niques is privacy, since model explanations can be used to recon-
struct the model [40] or to do transparency-based membership in-
ference [52]. Tramèr et al. [61] shows howmodels can be replicated
with access to only the model APIs. Providing black-box explana-
tions could potentially mitigate this issue. Preece [47] and Sokol
and Flach [57] discuss how explainability could compromise on
privacy. We describe an example case and then provide possible
suggestions to practitioners on how to address these issues.

Consider the use of counterfactual explanations to explain a pre-
diction to an end user. An end user could not only use such tools
to change their data maliciously to fool a model, but by querying
the model multiple times using a random set of inputs, a user can
possibly learn the approximate decision boundary that is being
used for classification. Moreover, methods such as the what-if tool
for producing counterfactual explanations pose a risk to data pri-
vacy since they provide points that actually belong to the training
dataset [65]. Providing the most relevant data points using sam-
ple importance unintentionally provides data that may belong to
prior users, which infringes privacy. Where those risks are present,
industry practitioners may need to develop methods to avoid the
harmful use of explainability tools. Below is one possible way to
approach such issues, applying a framework analogous to differen-
tial privacy.

Approach: Given a model f and an input to the model x , con-
sider an explanation represented by д(f ,x), where д(f ,x) could
be in the form of a counterfactual explanation point or a sample
important to the inputs prediction. Then, the private explanation
e should be such that e = д(f ,x) + ϵ where ϵ ∼ Laplace(0,b) is a
zero-centered Laplace noise with scale b .

The approach above implies that publicly released training data
points or counterfactual explanations need to have noise added to

them so that data rights or model privacy are not compromised.
Global explainability methods need to investigate ways to provide
explanations about the model without providing details on model
weights (directly or via global level feature importance scores) [40].

5.2.3 Explainability and Causality. One chief scientist told us that
“Figuring out causal factors is the holy grail of explainability.” How-
ever, causal explanations are largely lacking in the literature, other
than preliminarywork on causal attribution for deep learningmod-
els [15]. Though non-causal explanations can still provide valid
and useful interpretations of how the model works [39], many
organizations posit that the lack of use of local explanation tech-
niques for end users stem from a lack of causal interpretations.

The relationship between causality and explainability in ML re-
lates to a broader dichotomy. In distinguishingML techniques from
those in econometrics or statistics, a key component is prediction
vs. inference [10, 11, 33]. ML focuses on prediction, such that un-
derstanding the underlying process is generally considered less im-
portant than predictive accuracy. In fact, the power of ML tools is
often presented as a trade-off between accuracy and explainability,
with simpler more interpretable models often performing worse
on accuracy measures [49]. That said, there has been a growing
demand from end users, civil society groups, and law makers for
ML engineers not only to justify the quality of their predictions
through accuracy metrics but also to provide explanations for how
the predictions were arrived at. Explanations, however, are inher-
ently inferential, so these trends imply a growing need for an in-
ferential approach toML.While econometrics provides many tools
for causal inference on linear models [11], more work needs to be
done to connect statistical inference techniques to the context of
more complex ML models.

5.2.4 Unintended Consequences from Explainability Research. As
ML is increasingly being deployed in high-stakes situations, includ-
ing in finance, criminal justice, and content moderation, the ethi-
cal implications of how explainability techniques are used are an
important concern. In order for explainability techniques to facil-
itate greater accountability for end users, ethical desiderata must
include broader societal considerations for how the ML is being
used.

For example, several organizations we talked with have begun
to make extensive use of natural language processing and image
recognition models for content moderation in response to busi-
ness incentives, regulatory requirements, and sociopolitical pres-
sure. In some instances, explainability techniques have become
part of the workflows and development of those content moder-
ation processes and are making them more effective.

Though there are aspects of these use cases that are clearly in
users’ interest, there are others where that is much less clear, with
potential for adverse effects both when these systems work cor-
rectly and when they err [25, 38, 60]. ML researchers may not al-
ways be in a position to set the objectives and criteria for how their
technology is applied, whichmakes it difficult to propose best prac-
tices for ethical approaches to such work. The ML research com-
munity should continue to be mindful about the potential for both
constructive and unintended consequences of its work in this and
other sensitive domains.
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6 CONCLUSION

In this study, we critically examine how explanation techniques
are used in practice and illuminate the gaps between current tech-
niques and normative desiderata. We are the first, to our knowl-
edge, to interview various organizations on how they deploy ex-
plainability in their ML workflows, concluding with salient direc-
tions for future research. We found that while ML engineers are
increasingly using explainability techniques as sanity checks dur-
ing the development process, there are still significant limitations
to current techniques that prevent their use to directly inform end
users. These limitations include the need for domain experts to
evaluate explanations, the risk of spurious correlations reflected in
model explanations, the lack of causal intuition, and the latency in
computing and showing explanations in real-time. Future research
should seek to address these limitations.

We also highlighted the need for organizations to establish clear
desiderata for their explanation techniques and to incorporate ethics-
related desiderata, taking into account issues such as fairness, pri-
vacy, causality, and the potential for adverse unintended conse-
quences. Through this analysis, we take a step towards explain-
ing explainability deployment and hope that future research builds
trustworthy explainability solutions.
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